《解决问题》教学设计
作为一位优秀的人民教师,时常要开展教学设计的准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。如何把教学设计做到重点突出呢?以下是小编精心整理的《解决问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《解决问题》教学设计1教学目标
(一)知识与技能初步培养学生在具体的生活情境中收集信息,提出问题并解决问题的能力。
(二)、过程与方法通过学生的观察、探索等学习活动,使学生经历从生活数学到数学问题的抽象过程,感受知识的现实性。
(三)、情感态度与价值观在学习过程中,通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教学重点
引导学生结合商和余数在实际情境中的含义正确写出相应的单位名称。.
教学难点运用恰当的方法和策略解决实际问题。
教学准备
教师:课件。
教学过程:
一、激趣导入,引出课题。
教师:同学们,国庆节到了,学校为祝贺祖国的生日,要进行迎国庆歌咏比赛,要在校园里拉上彩旗,彩旗是按1面黄旗,2面绿旗3面红旗的顺序组成的。
出示课件:猜一猜,第13面是什么颜色的?第35面呢?第98面呢?
教师:同学们真厉害,猜得非常准确,其实这就是用有余数的除法解决实际问题。
教师:咱们运用有余数的除法就可以解决这个问题。
教师:这节课要学习的内容就是“用有余数的除法解决问题”。.
板书课题:用有余数的除法解决问题
二、尝试问题,自主学习。
(1)显示例4的主题图,让学生观察。
教师:在同学们的体育活动当中也会出现有余数的除法的实际问题,大家请看!
提问:从这幅图中你看到了什么?
你能根据图中的有效信息提出数学问题吗?
生1:有32个同学生2:老师要求每6人一组
生3:可以分几组,还多几人?
(课件同步出现:可以分几组,还多几人?)
师:你能帮老师解决这个数学问题吗?
师:请同学们用自己的方法算一算,开始吧。
(2)自主学习,尝试解决问题。
教师:小帮手们动作可真快!请两位小帮手给大伙儿说说你的计算方法。
师:哪位同学给大家说说自己的算法?
教师根据学生的口述板书,
如果有的学生没有写出单位,这时提问:
师:这里的商5表示什么意思呢?余数2呢?那单位各是什么呢?(根据商和余数的单位提问:
教师:你们知道这里的商5表示什么意思吗?余数2呢?
生:商表示可以分5组,余数表示还多2人。
(3)出示练习十三的第2题。
师:下面这道有关跳强绳的问题怎么解决呢?看谁做得又对又快!
19-8=11(米)11÷2=5(根)……1(米)
答:可以做5根短跳绳,还剩1米。
三、探究合作,解决问题。
2、做56页第3题。画线段图分析,说一说。
四、本课小结:请同学们谈谈这节课有什么收获?
五、练习作业。
1、教材P56第2、3题。
2、把你学到的知识讲给你的爸爸妈妈听。
板书设计:
有余数的除法
例4、32÷6=5(组)……2(人)
5
632
30
2
答:可以分成5组,还多2人。
教学反思:
本节课目标具体,可操作性强,符合学生的认知规律,本节的设计是以创设开放性的情境,引导学生自主探究知识,并运用所学的知识解决实际问题,让学生感觉到生活中处处有数学,数学是为生活服务的。从而激发学生的学习兴趣。
《解决问题》教学设计2一、教学目标
(一)知识与技能
进一步理解线段、射线、直线和角的相关概念,区分5种不同的角,用量角器和三角尺正确地量角、画角;灵活地运用相关知识解决问题。
(二)过程与方法
通过经历观察、操作、推理、表达等数学活动,培养学生发现问题、解决问题的能力。
(三)情感态度和价值观
引发数学思考,渗透数学思想,发展空间观念,提高应用意识。
二、教学重难点
教学重点:巩固有关线和角的基本概念与操作技能
教学难点:初步感悟图形的性质。
三、教学准备
多媒体课件
四、教学过程
(一)知识梳理
1.谈话:回忆一下,我们都学习了哪些有关线和角的知识?
预设:线段、射线和直线;角的分类;量角;画角
2.揭示课题
谈话:同学们学得可真不少,那么学习了这些新知识,有什么用呢?能不能帮助我们解决一些数学上和生活中的问题呢?这节课我们就一起来“解决问题”。(板书:解决问题)
【设计意图】为学生创设自主梳理知识要点的机会,有助于学生养成及时总结的习惯,使散落的知识点汇集成知识网络,深化对新知识的理解。
(二)实践应用
1.量一量
(1)量一量,队旗上的角。
谈话:同学们都知道,我们所佩戴的红领巾是队旗的一角,现在就让我们认识一下队旗,量一量队旗上的角。
①出示图片
②小组合作
互相指一指这5个角,指出它们的顶点和边;独立量角后交流。
③展示量角过程,交流量角方法及结果。
提问:量角时要注意什么。
(2)量一量,你有什么发现?
①出示图片:
②观察图中的角,有什么发现?
预设:∠1和∠2可以组成一个平角;每相邻两个角合起来是一个平角。
③思考:想一想,至少量出几个角,就能知道每个角的度数。
预设:一个钝角、一个锐角
④量一量,你有什么发现?
预设:对顶角相等;相邻角的和为180度等。
(3)先估计,再量出图中各角的度数。
①谈话:估一估,图中的角大约多少度?是什么角?
预设:∠1=45度;∠2在140度到150度左右;∠3=60度
提问:说说你是怎么估的?
学生结合图形说明。
②量角、验证。
【设计意图】本环节中的问题,已经不再仅仅是单纯的量角技能训练,而是从不同角度精心选择的问题。问题1,量队旗中的角,使学生感受到数学是应用于生活的,生活中处处有数学的身影。问题2,则是承载了多重意义 ……此处隐藏23794个字……p>
方法三:60÷5÷2(若没有同学用这种方法就不讲)
(1)你是怎么想的?
60÷5表示什么?(2小圈为一组,每组有12人)
12÷2表示什么?(每小圈有6人)
(2)你真聪明,会想到用这种方法。
3、讨论比较:说一说这题的两种解题思路有什么不同?
引导学生说出:因为第一种解法先把60人分成两个大圈,每个大圈再分5个小圈,求出每个小圈有多少人?而第二种解法是每个大圈有5个小圈,两个大圈一共有10小圈,求出每个小圈有多少人?第一种解法第一步用除法,第二种解法第一步用的是乘法;所以:第一种解法是用连除,第二种解法是先乘再除;虽然列式不相同:但结果都是一样的,都是求的是“每小圈有多少人?”。都要两步来计算,第二步都是用除法,
4、小结:其实,有很多数学问题都能用多种方法解答,虽然解法不同,但目的却是一样的。所以在解决问题时,我们应该学会从不同的角度去思考,选取相应的信息、选用自己喜欢的、容易理解的方法去解决问题。但不管用什么方法算,我们都应该弄清楚每一步算式所表示的意思,并正确写出单位名称。像今天所学的这类问题,在解题时我们可以用连除,当然有的时候也可以用先乘后除的方法来解决。
5、指导看书,梳理知识
(1)独立阅读教材P100例2,然后同桌互相说说每一个算式分别表示什么意思。
(2)质疑提出自己还不懂的地方。
6、现在我们就用这样的方法来解决生活中的实际问题吧!
三、巩固应用,拓展提高
1、把问题和相对应的算式连起来
学校有3层教学楼,每层8个教室,一共安装了168台风扇。
①平均每层安装风扇多少台?3×8
②平均每个教室安装风扇多少台?168÷3
③一共有多少个教室?168÷3÷8
2、(课件出示:P100做一做:)看,这是我们在活动中为家长、同学们准备的杯子,你能帮忙解决吗?
《解决问题》教学设计15教学内容:
教材第68~69页例1,“练一练”,第72页练习十一第1~3题。
教学目标:
1.使学生初步学会运用假设的策略分析数量关系,能根据问题的特点确定假设的思路,理解假设的解题过程,能运用假设的策略解决相应的实际问题。
2.使学生经历用假设解决实际问题的过程,感受假设策略对于解决特定问题的价值,进一步发展分析、推理和解决问题的能力。
3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
解决用假设策略时总量不变的实际问题,认识假设的策略。
教学难点:
运用假设策略分析数量关系。
教学准备:
多媒体课件
教学过程:
一、激活旧知,引入新课。
1.口答列式。
(1)把720ML果法倒入9个相同的杯子里,正好都倒满,每个杯子的容量是多少毫升?
(2)用600元买了5把相同的椅子,这种椅子的单价是多少元?
指名口版式,并说说数量关系式。
二、解决问题,认识策略。
1.出示例1,理解题意。
指名学生读题,说出题里的条件和问题。
提问:和刚才解答的问题比,这个实际问题复杂在哪里?
引导:你是怎样理解问题中数量之间的关系的?同桌互相说一说。
交流:怎样理解题中数量之间的系?
明确:根据“720毫升果汁倒入6个小杯和1个大杯,正好倒满”,可以知道6个小杯的容量+1个大杯的容量=720毫升;“小杯的容是一是大杯的1/3”就是大杯的容量是小杯的3倍,1个大杯容量等于3个小杯的容量。
2.思考交流,探究思路。
引导:现在有两种大小不同的杯子,这是解决题复杂的地方,根据题里两种杯子容量间关系的理解,你有办法解决这个问题吗?自己先想一想,再和同桌说一说,看哪些同学能想到办法。如果思考有困难,也可以画图看一看。
指名交流想法,引导学生理解:
(1)画示意图看,1个大杯容量,可以看作果汁倒在9个小杯里;或3个小杯容量等于1个大杯容量,可以看作果汁倒在3个大杯里。
(2)假设把果汁全部倒入小杯,就是9个小杯,可以先求出小杯容量再求大杯容量。
(3)假设把果汁全部倒入在杯,就是3个大杯,可以先求出大杯容量再求小杯容量。
(4)假设每个小杯容量是X毫升,大杯容量就是3X毫升,可以列方程解答。
小结:通过交流,虽然大家有借助画图的,有直接思考的,但基本上是两种思路:一种是假设把果汁倒入同一种杯子,或者全看作大杯,或者全看作小杯;另一种是假设每个杯容量是X毫升,大杯容量就是3X毫升。
3.解决问题,体会策略。
引导:现在你能解决问题了吗?请选择一种方法列式解答,并进行检验。
学生列式解答并检验,教师巡视,选择不同解答方法的学生进行板演。
集体评析板演的不同方法,弄清各种算法中每一步算出的是什么。
讨论板演的不同方法,明确:检验时要看求出的结果是否符合题目中的两个已知条件,就是算出6个杯和1杯总量720毫升,小杯容量是大杯的三分这一。
追问:这些不同的解题方法里有什么共同的地方?用假设的方法有什么作用?
指出:解题方法虽然不同,但都是用了假设的方法,这样可以使大杯和小杯转化为同一种杯子,即使用方程解答,也是假设小杯容量为X毫升,大杯容量就是3X毫升,实际上就是把1个大杯转化成3个小杯,这样就使问题变得比较简单。
三、应用巩固,内化策略。
1.做“练一练”。
学生独立解答,指名板演。
交流:这里是怎样用假设策略的?每一步算式表示什么?
追问:为什么这道题假设全部买椅子而不是假设全部买桌子?
指出:为了计算方便,要根据两个量之间的倍数关系合理选择假设。运用假设策略时,怎样根据数量间的关系假设也很重要。
2.做练习十五第1题。
学生独立完成填空,再同桌互相说说自己的想法。
全班交流。
指出:解决题这题时,要先弄清两个数量之间的关系,再通过假设正确地把两个数量转化成一个数量。
3.做练习十一第2题。
让学生填充并交流填充结果。
提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?
学生独立完成解答,指名板演。
集体交流,让学生说说解答的过程。
四、全课总结,布置作业。
1.交流认识。
提问:今天学习的实际问题为什么要用假设的策略解决?通过今天的学习,你对假设的策略有了哪些认识?还有什么体会?
五、作业布置。
补充习题相对应页。
文档为doc格式