二元一次方程组教学设计

时间:2024-09-09 08:51:21
二元一次方程组教学设计

二元一次方程组教学设计

作为一名人民教师,通常会被要求编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么什么样的教学设计才是好的呢?下面是小编为大家收集的二元一次方程组教学设计,欢迎阅读,希望大家能够喜欢。

二元一次方程组教学设计1

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的'特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

二元一次方程组教学设计2

1教学目标

教学目标:

根据新课标要求,考虑到学生已有的认知结构与心理特征,制定如下教学目标:

知识与技能:会用代入消元法解二元一次方程组.

过程和方法:对代入消元法的探究,使学生体会代入消元法所体现的化未知为已知的化归思想方法.

情感、态度与价值观:通过探究解决问题的方法,培养学生合作交流意识与探究精神,进一步体会方程是刻画现实世界的有效数学模型.

2学情分析

3重点难点

教学重难点:

重点:代入消元法解二元一次方程组.

难点:对代入消元法解二元一次方程组过程的理解.

关键:掌握代入消元法的关键是化二元方程为一元方程,而转化的关键是将方程组其中一个方程变形为“y=ax+b”或“x=ay+b”(其中a、b为常数)的形式,因而对代入消元法的理解关键是对“消元”思想的理解.

4教学过程

4.1第一学时

教学活动

活动1【导入】教学过程

问题:我校计划举行班级篮球联赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,为了争取出线名额,我班至少要在全部10场比赛中得到16分,那么,我班胜负场数分别是多少?

设计意图:激发学生学习兴趣,渗透方程(组)解决实际问题的'有效性.由于问题的解法在上一节中已经讨论过,所以这里的侧重点不是列方程(组),而是为探究二元一次方程组和一元一次方程的关系服务.

1、解法一:直接设两个未知数,设胜x场,负y场,根据题意列方程组得

思考(紧扣课题,明确主要内容):这个方程组的解是什么?如何解方程组?接下来我们将探讨如何解二元一次方程组?

2、解法二:只设一个未知数,设胜x场,则负(10-x)场,根据题意列方程得

2x+(10-x)=16

活动2【讲授】过程

1、思考:上述的二元一次方程组和一元一次方程有什么关系?

教法:教师提出问题后,将学生分成小组讨论.教师深入学生的讨论中,引导学生观察 ,给予学生肯定与鼓励.归纳总结:我们发现,解法一所设的y相当于解法二中的(10-x),因为问题中y和(10-x)都表示负场数,进一步发现方程组中第一个方程x+y=10可以写成y=10-x,而由于两个方程中的y都表示负的场数,所以我们把第二个方程2x+y=16中的y换为10-x,这个方程就转化为一元一次方程2x+(10-x)=16,解这个方程,得x=6.把x=6代入y=10-x,得y=4.从而得到这个方程组的解.

适时给出概念,感受概念是通过实际生活抽象得出的

2、消元思想

二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求出另一个未知数.这种将未知数的个数有多化少、逐一解决的思想,叫做消元思想.

归纳总结:上面的解法,是把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法

二元一次方程组 一元一次方程.

设计意图:通过梳理“情境问题”中方程组的解法过程,给出数学方法的名称,即数学概念,从而体验“过程与方法”.

(三)知识应用

1、尝试解题,独立完成

例1 用代入法解方程组

设计意图:培养学生自主学习的能力,同时通过初次尝试,引起学生对数学解题步骤的重视.

解:由①,得x=y+3. ③

把③代入②,得

3(y+3)-8y=14.

解这个方程,得y=-1.

把y =-1代入③,得

x=2.

所以,这个方程组的解是

思考:

(1)把③代入①可以吗?试试看.

(2)把y =-1代入① 或②可以吗?

2、课堂练习

练习1:把下列方程改写用含x的式子表示y的形式(1)2x-y=3;(2)3x+y-1=0

练习2:用代入法解下列方程组

(1) ( ……此处隐藏8931个字……,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。

七、课堂小结

以提问进行:

(1)、二元一次方程(组)的特征是什么?

(2)、二元一次方程组的.解要满足什么条件?

设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。同时为以后的学习作知识储备。

八、教学反思

1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。

3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。

二元一次方程组教学设计9

一、教材的地位和作用:

本节课是在复习一元一次方程及其应用的基础上,对二元一次方程组及其应用的复习,进一步体会消元的数学思想,以及化“未知”为“已知”,化复杂问题为简单问题的化归思想,体会二元一次方程组与现实生活之间的联系的一般的圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一。

二、学情分析:

九年级下学期的学生有一定的知识结构体系和解决问题的能力。所以在教学中除了让学生灵活应用“代入法”和“消元法”解二元一次方程组之外,还应建立数学与生活的联系,引导学生用数学的眼光思考问题、解决问题。

三、教学目标:

1、知识与技能:会用代入消元法和加减消元法解简单的二元一次方程组,并能根据方程组的特点,灵活选用适当的解法。

2、过程与方法:探求二元一次方程组的解法,体会消元的数学思想。

3、情感、态度、价值观:渗透转化的辩证观点,培养学生利用数学知识解决实际生活问题的实践能力。

四、教学重点与难点:

1、重点:掌握消元思想,熟练地解二元一次方程组.会用二元一次方程组解决一些简单的实际问题。

2、难点:是图象法解二元一次方程组,数形结合思想.

五、教学过程:

(一)知识回顾:

1.含有2个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

2.由两个或两个以上的二元一次方程所组成的方程组叫做二元一次方程组。

3.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

4.二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

5.解二元一次方程组的基本思想是消元法,即把“二元”变成“一元”,方法有代入消元法和加减消元法。

6.列二元一次方程组解应用题的一般步骤为:一审,二找等量关系,三设未知数,四列二元一次方程组,五解,六答。

(二)重点展现:

例1:解下例方程组:

(1)解:由①得,=1-③……将其中一个未知数用另外一个未知数表示;

将③代入②得,3+2(1-)=5……将变形后的方程代入另一个方程;

解得,=3…………解一元一次方程求出其中一个未知数的'值;

把=3代入方程③得,=1-3=-2……把求出的未知数的值代入变形后的方程,求出另一个未知数的值

∴原方程组的解为

(2)解:由①×2得,4+6=16③……变形方程,使得某个未知数的系数相等或互为相反数;

由②-③得,11=22……消掉其中的一个未知数,得到一元一次方程;

解得,=2……解一元一次方程求出其中一个未知数的值;

把=2代入方程①得,=1……把求出的未知数的值代入变形后的方程,求出另一个未知数的值

∴原方程组的解为x

(三)巩固应用:

例1、已知以、为未知数的方程组的方程组与的解相同,试求、的值。

解:解方程组,得

把代入方程组,得,

解得

例2(xxxx年xx中考题)、某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:

请根据上面的信息.试计算两种笔记本各买了多少本?

解:设购买单价为5元的笔记本本,单价为8元的笔记本本,依题意,得:

解得:

经检验,符合题意。

∴购买单价为5元的笔记本25本,单价为8元的笔记本15本。

(四)能力提升:

例1、已知一次函数=+1与另一个一次函数=相交于点A,试求出点A的坐标。

解:依题意,得

解得:,

∴点A的坐标为(3,-2).

例2.(20xx年xx中考模拟题)某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。

(1)求A、B两种纪念品的进价分别为多少?

(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?

解:(1)设A种纪念品的进价为元,B种纪念品的进价为元,依题意,得:

解得:x,

答:A、B两种纪念品的进价分别为20元、30元

(2)设商店准备购进A种纪念品a件,则购进B种纪念品(40-a)件,依题意,得

解得:

∵总获利是a的一次函数,且w随a的增大而减小

∴当a=30时,w最大,最大值w=-2×30+280=220.

∴40-a=10

∴应进A种纪念品30件,B种纪念品10件,才能使获得利润最大,最大值是220元.

(五)课堂练习:

1、解下例方程组:

2、若方程组的解为,试求、的值。

(六)家庭作业:

1、必做题:指南第25页A组2(2)、(3),4

2、选做题:指南第26页B组2,3

《二元一次方程组教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式